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EVALUATION

1. This is the Final Report on the contract. It covers the period

1 July 77 to 11 Oct 79, The objective of this research was to study

the waves which can propagate on a honeycomb panel of the type used

to construct the shelters which house much of the ground-based electronic
equipment developed by the Electronic Systems Division. By knowing

the waves that can propagate on such panels, it will be possible to
develop a system of non-destructive evaluation (NDE) which can, in a
cost-effective way, find defe tive panels and avold their incorporation
into shelters.

2. Although this work terminated before developing a complete theory
appropriate to the exact honeycomb structures used in shelter panels,
it does provide adequate information for understanding the waves
appropriate for the NDE of shelter panels and would form the basis of
an experimental study.

S 7 Barrczy

ALAN J, BUDREAU
Project Engineer
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I. INTRODUCTION

Honeycomb panels and foam-core panels consist of a light-weight
core bonded between face plates. This fabrication results in a strong
light-weight and insulating construction element. Such panels are used
in containers for housing electronic equipment, Honeycomb panels are
also used in airplane construction, while foam-core panels are used for
insulating tanks,

In the case of the honeycomb panel, the core consists of an array
of thin-walled, hollow cylinders of hexagonal cross-section, as shown
in Figure 1, and resembles a honeycomb. The core material consists
of waxed cardboard in the case of equipment containers, while in air-
plane construction it is usually metal. Face plates are attached to both
ends of the core using epoxy or other adhesive bonding materials (one
of the face plates is shown in Figure 1).

Foam-core panels consist of a foamed plastic, such as styrofoam,
between face plates. The foam can be generated by interacting the
chemical agents directly on the face plates, in which case a welded bond
exists between the foam and plate, Alternatively a prepared foam core
may be glued to the face plates.

During fabrication and use, defects can occur within the panel, and
are therefore not detectable by visual inspection. One type of defect is
a region of a face plate that is not bonded to the core. Another defect in
honeycomb panels is the presence of water in some of the cells, which
can degrade a cardboard core and weaken the epoxy or adhesive bond
between core and face plate, Other defects are buckled or fractured

cell walls,
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Currently, acoustic non-destructive evaluation (NDE) techniques
are used to locate the defects cited above in honeycomb panels. An
acoustic beam in a fluid is directed at normal incidence on the panel and
received at the opposite face. The beam is then scanned in a raster
fashion over the area of the panel. Unbonded regions interrupt the trans-
mission while water in cells increases the transmission. Since the size
of the acoustic beam is on the order of the cell diameter, the raster
scan inspection procedure is very lengthy for a large panel. A great
reduction in inspection time could be achieved by propagating the acous-
tic waves parallel to the face plates, rather than perpendicular to them.
In this way, one would inspect an entire strip along the panel at one time.
Reinspecting installed panels with only one face exposed would require

using waves that propagate along the panel,

A. Honeycomb Panels

(1)

Low frequency studies of propagation along honeycomb panels
have been carried out with the aim of NDE inspection in mind. How-
ever, it was recognized that successful NDE inspection would require
the use of high frequencies for which the acoustic wavelengths would
be on the order of the cell diameter. Establishment of a sensitive test
procedure requires a knowledge of the propagation characteristics of
the modes guided by honeycomb panels. From such knowledge, one can
determine the frequency and mode polarization most useful for inspec-
tion, These choices must be made in relation to the geometric design
and elastic properties of materials used in the panel.

In this report we first compute the properties of waves propagating

through a honeycomb of infinite extent. Because the honeycomb is a




periodic structure in two dimensions (and uniform in the third dimen-
sion), the waves propagating through it are Bloch waves, which are anal-
ogous to plane waves in an elastic continuum. Each elastic field quantity
in 2 Bloch wave is the product of a plane wave's exponential factor, and a
second function that gives the variation of the field quantity within a unit
cell. In the case of a honeycomb, this second function is defined only
within the honeycomb walls if the space within the cells is assumed
empty. The waves guided by an assembled panel will be a combination
of the Bloch waves, just as the waves guided by a plate are a combina-
tion of the plane waves of an infinite medium,

The calculation of Bloch wave propagation characteristics are car-
ried out over the range from low to high frequencies. At low frequen-
cies (below 1,0 kHz for a Shelter Core honeycomb) the core is found
to act as an elastic continuum of hcxagonal symmetry, and hence sup-
porting three wave types. At high enough frequencies (above 10 kHz
for the Shelter Core honeycomb) , the wavelength of all wave types
is on the order of the cell diameter, and hence the periodicity of the
honeycomb strongly effects the propagation.

Having computed the Bloch waves in an infinite honeycomb, we next
compute the characteristics of the waves guided by a structure consist-
ing of one face plate bonded to a semi-infinite honeycomb, In this case,
the waves guided by the face plate are strongly perturbed by the coupling
to the core. The SH and symmetric Lamb waves in the face plate are
found to radiate or leak energy in to the honeycomb, and hence are of
the leaky wave type. The flexural wave in the face plate is speeded up by
the honeycomb, but remains a bound surface wave. These calculations

are carried out treating the core as an elastic continuum. For a Shelter
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Core honeycomb this means frequencies below 1,0 kHz for the SH wave
in the face plate, and below 10 kHz for the symmetric Lamb and flexural
modes of the face plate.

The cross-section of a regular hexagonal honeycomb is shown in
Figure 2, The core consists of strips or plates of thickness t, width w
and infinite length along z (out of plane of the paper). The strips are as-
sumed to be arranged in a regular hexagonal pattern. This assumption
idealizes actual honeycombs, whose fabrication leads to hexagons having
unequal vertex angles, and two of whose side walls are of double thick-
ness as compared to the other four.

A unit cell of the periodic core is indicated by the dashed curve in
Figure 2. The entire periodic core can be generated by translations of
the unit cell along the basis vectors _<_i_1 and 92' as shown in Figure 2,
of the periodic structure. The cell is seen to be composed of plate
segments coupled at two Y joints. A primary part of the study of core
waves therefore involves the coupling of the plate waves at the Y joint.

The acoustic fields in the plate segments that form the cell walls
can be expressed as a superposition of plate modes. Since the thickness
t of the cell walls is one tenth of their width w, or less, thin plate ap-
proximations may be made for the plate modes, even for frequencies
where the cell diameter is on the order of the acoustic wavelength,
Consistent with this approximation we keep only the lowest four plate
modes, which are: 1) the shear wave with no variation across the plate -
the SH mode; 2) the lowest symmetric Lamb mode - L mode; 3) the lowest
anti-symmetric Lamb mode or flexural wave - F(0) mode; and 4) the first

cutoff flexural wave - F (1) mode.
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The F(1) mode is included since it has the same transverse varia-
tion through the thickness of the plate as the F(0) mode, and since its
attenuation constant vanishes as frequency goes to zero. Hence, this

mode will couple neighboring Y joints at low frequency and its inclusion

is necessary to accurately find the amplitude of the F(0) mode excited even

at an isolated Y joint. All hig_her order plate modes attentuate rapidly
away from the Y joint, even in the limit of zero frequency, and there-
fore do not couple neighboring Y joints. In addition these modes have
more variation through the thickness of the plate, and are therefore not
expected to be strongly excited,

The physical approximations used to obtain the mode coupling are

discussed in Section II. These approximations are embodied in a set of

twelve equations containing the amplitudes of the twelve modes. (four modes

in each of the three plates). From these equations a scattering matrix is
obtained that gives the amplitudes of each of the twelve modes excited at
the Y joint for any incident mode,

For propagation perpentidular to the cell axes the SH mode does not
couple to the L, F(0) and F({) modes at the Y joint, as discussed in Sec~
tion II. Thus we may treat separately the case of waves having particle
motion parallel to the cell axis, which corresponds to the SH plate mode
polarization, and whose properties are found in Section III, The L, F(0)
and F(1) modes together give rise to two Bloch waves in the honeycomb
polarized with particle motion perpendicular to the cell axis, which are
considered in Section IV,

The case of propagation oblique to the cell axes is treated in Section
V. Here, the shape of the intersection of the slowness surfaces with the

principle planes is found. From these curves and the propagation
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perpendicular to the cell axes it is possible to infer the shape of the com-
plete slowness surface., At high frequencies it is found that more than
three surfaces can exist, and these surfaces indicate that propagation
can take place only over a limited range of angles about the direction of
the cell axes.

The characteristics of Bloch wave propagation at low frequencies
are used to define the constants of an elastic continuum of hexagonal sym-
metry. This continuum is assumed to be directly bonded to an aluminum
face plate and the propagation constant of waves guided by the combina-

tion are determined in Section VI,

B, Foam-Core Panels

In studying foam-core panels, we have treated the case of waves
guided by a single aluminum face plate attached to a semi-infinite foam
core, as discussed in Section VII. The foam is treated as an isotropic
continuum, with elastic constants representative of typical static values
found in the literature, Both the case of directly bonded and glued foams
are considered. The waves are found to radiate or leak energy into the
foam. The rate of leakage and the propagation constant are found to be

strongly influenced by the presence of a glue layer,

-8-
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II. MODE COUPLING AT A Y JOINT

The Y joint of three plates is shown in Figure 3. For each plate,
with index i = 1, 2, 3 a coordinate system (xi, Y z) is established as
shown. In treating Block wave propagation oblique to the cell axes,
all four of the plate modes in the cell walls will couple at the Y joint.

In order to satisfy the coupling equations for all values of z along the
joint, all of the modes must have the same phase dependence exp(-jk, z),
where kz is the wavenumber along z. This condition is the analogue

of Snell's law in optics. Since the Bloch wave is formed by the plate
modes that are multiply scattered at the Y joint, all fields in the Bloch
wave must have the same phase variation along z, and hence kz is the

z component of the wavevector of the Block wave. The variation of the
modal fields along (xi. Yy z) in each plate can be represented by equi-
valent transmission lines(z'b ). Mode coupling at a Y joint is then repre-

sented by an interconnection of the modal transmission lines, or by a

scattering matrix,

A. Transmission Line Representation

In the transmission line representation, the ficlds of each mode for

harmonic time dependence exp(jwt) are expressed in the form

Vy(xi: Yi' z) 81 (Yi) -jkzz
v (X5 ¥y 2) = V(x,) 32“’&’ e (1 -a)
-9-
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\ 4
Yy Xy 3

Figure 3. v joint of three plates indicating the coordinate
system for each plate.
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Ty X ¥y 2) q, {y;) ik z
— z -
-Vx(xil Yi' z) q3(Yi)
In (1), the 1x3 matrices g_(yi) and _g_(yi) are the mode vectors and V(xi).
I(xi) are the modal voltages and currents. In terms of traveling waves,
- jrx. jK=x,
V(x.) = (be '+ae YHY{Z
i
. , , (2)
-)Kx, Jx.x'l 1
I(xi) = (be - ae E

where K is the wavenumber of the mode, Z is the modal impedance, and
b, a are the amplitudes of the waves traveling in the + and - X directions,
respectively. If the mode vectors are normalized such that

t/2

[ gy g rdy= -, (3)
-t/ 2

then Re[V(xi)I*(xi)] represents the power carried in the + x; direction
by the mode, per unit length along z. For propagating modes X and Z

are real and
o
Re[ Vix)I'(x,)] = |b] 2 - [a] 2 (4)
while for evanescent modes with X imaginary, Z is imaginary and

Re[ V(x,)I"(x;)] = Re[-r%r (ab”® - a*b)] : (5)

The various modal quantities for plate waves have previously been de-
45+ 6)

rive
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For thin plates, the plane-strain approximations may be made for
the modal fields”’ 8). In this approximation, the cross-section of the
plate is assumed to remain a plane surface of constant width, Employ -

ing this approximatijon, we derive in the Appendix the various quantities

for each mode. The modal quantities are tabulated below, In these

pressions, w is the shear modulus of the wall material, p is its den-

sity and v is Poisson's ratio, The wave number ks of shear waves in

the wall material is

e
ks=w/u, (6)
1. SH Mode
< L2 2. _ BKg
Ks kB -kz ; ZS = —w— (7)
- . .
0 r 0
=L | = =L/ kye? (8)
gly)= — - | ay) = — up p)
JT | v ST k2
2k k
—2 -2z
k k
| s ] b s
2. L Mode
kL= ks/(l-v)72
(9)
= /2.2 = @0
L=/ kLK ZL‘._L

-] 2.




[ o o]
k k k
_1-v | 2 s 2
By) == | =— v = | -/up &= =< (10)
AT ks /T
2
=1 +E_z_ 1
{-v 2 p—
i kg, ] L JE
3. F(0) Mode
kS
(11)
- 2 2 -
ko= kpo - Ky 5 Zo-‘z"%
. 2 2 2
[ { [ x2t/ 2%y ]
np - vue 20v)
ik
1 I ¥ 1 1
) =5~ | — b ay) =g -i2/mp ky —L—
E N, e aly Ng Tevue Xy 1055 1
2
jk_y 1 + i 2kz -1 Jksy {
8" \,v 1-2r k2 1-2r i
s
- .J - .J
(12)
Here
2.3
N2=-—-—k§.t‘ 1+#
0~ 6(1-v)(2r-1) 2(2r-1) (13)
and ‘
r=J azi -V)/ksto (14)
-1 3-
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4. F(1) Mode

kpy = -ikpg (15)
- /12 2 - _wp
R A T
1
r . r -
1 _ k2B
fup 1337 K e
ik y k y
1 Z 1 1 . — Z
gy)=o— | —=— raly)=x— | i2/pe 705
Nl m 142r N1 1+2r
Ly (%] |
VT Y Trer (77 ! kY Trar
L s J L 4
(16)
Here
2.3 -
N2= kst 1 - 1'1/ (17)
1t~ 6(1-v)(2r+1) 2(2r+1)

and r is given by (13).

B. Representation of Coupling at ¥ Joints

The Y joint of three plates, as shown in Figure 3, may be viewed
as the connection to a triangular cylinder of three plates having end
faces perpendicular to x;. With this view, mode coupling at the Y
joint is determined by the boundary conditions at the surfaces of the
triangular cylinder. We assume that the cylinder is rigid and mass-
less, The assumption of rigid motion composed of translation and
rotation about the z axis is consistent with the plane strain approxi-
mation used for the modal fields, Neglecting the mass of the cylin-

der implies that the net force and torque about the z axis must vanish,

{4




and ignores the kinetic energy that it stored in the cylinder's motion.
Rotation of the cross-section about the x and y axes is not taken into
account, nor are the torques about these axes considered. Experience
with structures that are periodic in one dimension suggests that the ef-
fect of neglecting the kinetic and potential energy in the cylinder is
limited to a small error in the frequencies predicted for the stop-

(9)

bands °’, which is not expected to be significant for NDE applications.

The approximations used here are essentially the same as those used
to describe mode coupling at L. and butt joints of two plates“o).

If the rotation and torcue about the x and y axes were taken into
account more equations would be obtained than the number of scat-
tered waves. As a result, the scattering problem would be over
determined, and it would be necessary to include more scattered
modes in the plates. Physically, the particle velocities associated
with the rotation of the cross-section about x and y will be small
compared to the translational velocities, To estimate the differences
in the velocities cited, consider the F(0) mode to be incident in plate
1 of Figure 3 at an angle @ with respect to the x, axis. This mode

1

will tend to rotate the triangle about the x  axis, in addition to rotat-

1

ing it about z and translating it along vy At the corner x, = 0,

i

¥y = t/2, the particle velocity due to the rotation about x is v _(t/2)

1
while the translational velocity is Vg From the mode vector given
by (21) it can be shown that the ratio vz(l:/2)/vy is of the order
/m_sin 6, which is less than about (0.1)sin 8 for the highest
frequencies discussed here. In other words, the particle velocity

due to rotation about x, is small compared to the translational velocity,

1

-15-
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and hence little error will be introduced by not accounting for the
rotation.

1. Particle Velocity Conditions

Let Xi(yi)exp(-jkzz) be the particle velocity at the end face X, = 0
of the ith plate in Figure 3, Now the motion of the triangular cylinder
consists of a translation _v_oexp(-jkzz) of the center of gravity plus a
rotation Q _z_'oexp(-jkzz). Referring to Figure 4, it is seen that the
particle velocity of the ith face, with the phase factor exp(-jk_z) un-

derstood, is
Vily) = Yot 22, XE= Y5 - X450 Y, + ¥0i0 4 (18)

where x . and . are unit vectors along x. s a
X.i Yoi 2re uni tors alo g X, and Yy nd

t

2/3

d = (19)

is the perpendicular distance from the center of gravity to the trian-
gular faces.

Alternatively, the particle velocity X—i(yi) can be expressed in
terms of the modes of the plate. Let Vg;, Ig; be the voltage and
current at x, = 0 of the SH mode in the ith plate. Similarly, let

v I..-and V i and V I,. be the voltages and currents at

Li* ILi oi* Toi 1 L
x, = 0 of the L, F(0) and F(1) modes in the ith plate. The particle
velocity at x; = 0 can be expressed in terms of the plate modes using

the modal quantities listed in the previous section. With the phase

factor exp(-jkzz) implied, the components of particle velocity are

(y)=1, .+ -1 2, L)/ I Y
X .* v, Y' - , e . ,  ——— . - .
=oi —i'’i Li Si 0i N, (2r-1) 1i N, (2r-1)
,/ t / t ks 0 |
(20)
-16-
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Figure 4. Cross-section of the triangular cylinder at a Y joint, which
is assumed to move as a rigid body.
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-1 ] 1
Y. v.ly.)= V.. + V. . p— (21)
oi —i7il - "O0i No/ue (2r-1)  ''N /U c2ren)
kzks(l-v) 1
2ot Yly)=V . (22)

Li ; ——r2' Vsi /——

2/ tpueks [tuo
In writing (22) the z components of particle velocity of the F(0) and
F(1) modes were not included since they depend linearly on Yy and
hence represent a rotation about the x; axis, which is not accounted
for in our approximation.

The particle velocity (20)-(22) of each plate end must be consistent

with translation of the triangular cylinder and its rotation about z, as
stated in equation (18). Egquating like powers of s for each component

gives the equations

-jks -jks
.n=10.1-No(2—r_17 +1“W (23)
x +v =1 = 1. S (24)
—o0i —o LI l’T Slﬁks
.v_ +Qd= V. = 1 25
Toi + %o 11 VOINo»/tTp(Zr-l) ! van\/_u—p(Zrl-l) =
. k k_(1-v) q . 26)

2, Yo= Vi Szt Vs
2/tupk® /tue

Four equations can be obtained by substituting (23) into (25) and

using the relations

- _1 . 3 .
202" Lo0™ " 2%q) -‘lo‘“‘z:;'lfol Yo (27. a)

-18-




¥

-
"x‘: “

~ 7

1 3
Zo3 " Yo - 3Xei ¢ ¥, - 7 Yol " Yo (27. b)

3 1
Yop ' Yo - 5xq1* v, "3Y¥ol* Yo (27.¢)

c v = . 1
Yo3 " Yo= H x4 Lo "3 Y0l " Yo (27.d)

Also, (25) represents two equations relating the modal gquantities, as

does (26). The eight equations so obtained are

= 2 1 -2
O~/-§?<IL2+ ZILI m-ks <IS2+2151)
\'4 v I
i 0t 11 01 11
+ L 1 * jk_d (23. a)
m [NO(:ZI- 1) "N (?r+1)] s [ 0(21- -1) N1(2r+1)]

= 2
O'W‘Im Ll)'l/-—'k (15 zsl’

Y N T I—jk a |0t 1 (28. b)
m N0(2r-—1) N1(2r+1)— 8 0(21‘ 1) N1(2r+1)

k
0= . —E 1 -z I
2/? [Li ks S1 m N0(2r-1 Nl(gr“)
1 - 1
I ,+51 I +%1
; 02 2701, 1272,
* ikgd Ny(2r-1) * Nl(2r+1) ] (28. c)
{
NEN k, 1 03 * 3 Vo V13+2V“
0= ILl -i(_ISI + N_(2zr-1) N, (3r+1)
2/t s Moo 0 )
1
L.+3%I I, +%1
: 03 " 204 13 " 2711
* Jkgd * 28.d
e [ No(Z==1] " N T3+1T } (28.d)
~19- ‘
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g M T2 Lo
N (Zr-1) T N, (2rel) - N(&r<1) TN (3reD)
0 t 0 t
I I
~ los 13
= Np(2r-1) © N (2r4D) (29)
kaS kzks
(v) =5 Vg t Vg = )=V ,+ Vg,
22 2k’
Kk
= (1) 22V 4V, (30)
22

2. Force and Torque Conditions

In addition to imposing continuity of velocity, which yielded the
foregoing six equations, we must require that the force and torque
about z on the cylinder vanish. A mathematical statement of vanish-
ing force is

3 t/2
z -/;/2 [l‘oi T (0 Vo z) + Yoi Txy(o’ Yy 2) * 2o sz(O, Vi ?’} dy,= 0

i=1 (31)

while the vanishing of torque about the z axis can be written
3 t/2
Z f (i‘-’old + Yol yi) x [_1501 Txx(o' Yy z) + Ya1 Txy(o’ Yo z)] dyi =90

=1 -t/2 (32)

Substituting the modal quantities from the previous section into

(31) gives

-20-




3 2
Z{:_:bl[<1+(1-u)k—>/"v y oz ﬁ'vSi]

i=1 kp,
. Jupkg (1, 1,
Yor 12(1-v) N, "N,
k, 2k22 -kf 1
+_z_° upt -Zk—ILi + —k—g——— ISiJ =0 (33)
s
8

Decomposing x ., y  fori= 2,3 alongx , y . we can write (33)
- oi ~oi “oi

in component form as

2
K k,

_ z 1 1

0= ['““‘”:Z} VE Vg -5V -3 Vi)t i ‘/—(zvsrvsz Vss!
L
2.3
Tup kgt <102'103 ] I12‘113> (34)
83 (1v) \ No Ny

2
k k
_ 1 z M 3t z
= [-1'*‘(1 -V)’;'f] 5 (VLZ - VL3) + /3t T(-; (Vs2 - VS3)
L

2,3

Jrue kg v (2o ~Top-To3 Hyy - lyp-lys (35)
24(1 -v) N N
0 1

0= =25 (g et In "T_ (Igy + Iy + Ig3) (36)

Substituting the modal quantities into (32) gives

3 .
Z{mks<li ﬁ’f) [ ;.rvl 12—5)}-1\'10_

i=1
A\
-J[i - 2ir+vt <1 2 )} 'ﬁl'!i} (37)
-21- ‘
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3. Scattering Matrix Representation

Equations (28)-(30) and (34)-(37) are twelve equations describing
the coupling between the twelve plate modes, four in each plate. Be-
cause of their complexity, we have chosen to use the equations to
generate a scattering matrix for the junction. To this end we express
the various voltages and currents in terms of the traveling-wave am-
plitudes a and b using (2) with x, = 0.

Let the 1x4 matrices a., and b, be defined as
=i =i

’-aSi rbSi
ari bri
;= ; b; = (38)
a9i Poi
| 211 | | Pyi |

After substantial manipulation, one obtains from (28)-(30) and (34)-

(37) equations relating the traveling-wave amplitudes in the form

F.a;l h’.t
a b
[Ag)] =2 +[A§J."] 2| .o (39)
23 by
24 by
L L

The { 2xi 2 matrices [Ag)] and [Agj')] are defined in Table I. From

(39), the 12x1 2 scattering matrix Sij relating the a's and b's as

[b]= [Sij] [a] (40)

can be expressed in the form

-22-




TABLE I

(+)
ELEMENTS OF THE {2x1 2 MATRICES [Aij- -‘ DESCRIBING PLATE MODE COUPLING

t 1
1 1 |
- 1 - - -
Fm  t3 VAL /3_"‘3.5,' + 2my i 0 o 0 0 0 ° }
S | |
- 1 ! | -
fm, +3 ¢"§mz.4 ¢r§rn3'g 0 0 0 0 , Fem o+ 0 0 j
| '
- i3 ] )
F3m t55- m, , mys . O 0 am, , 2my 0, O 0 0 0
i {

- i t i
tf§n1+£;- my 4 myg o O 0 0 0 .0 0 2my, 2my .
...... DU (RN MDA S X 2 2 2

!
0 0 1 ¥ mg ! 0 0 +1 +m 0 0 0 ]
[ h - !
[} !
0 0 0 0 ‘0 0 F1 ¥ mg ! 0 0 +1 +mg
] ' - -
1 \
‘/zs721d k,/k, 0 0 :../zs7zL -kz/ks 0 0 ; ] 0 0 0
. .
! r‘2'7'z-‘ Xk /
e O S O EE Kk 00 e 0
[} )
2m, 2 e 0 : -m, -1 + ﬁms ¥ 3m9 “ -my -1 'Fﬁmg tﬁmq
] i
0 0 w2mg + 2m, : ,/Tm., /3 tmg Fmy : -/Tm,, /3 tmg Fmg |
i ]
- - - x
mo Fk/kg 0 0 l‘+ m, Fk,/k, O 0 VEm, ¥k /k, 0 0
i 1
LO 0 ‘;mtz "‘u,n: 0 ] 1+m mn.n: 0 \ tim o mn.n,
m otk L N RPN
17 2%V Zg Mo 4 WD) | 8 Z,
my =2N-2t [i"‘*lkd]/'z‘l: m—.riQ.ZL:.‘./_.‘l
» + - -
5 1( r+i) ru-p [ Zt 6 { 2r+4 Zl
2.2
2kz s Jupt k‘ t { 1
m,= M, = =
ks[-uu-wkf/k{] L [-H(t-v)kz/kl‘] VZ %,
2
Voptk2e? k
e T 7 mo o33
971 {t-v) 1 K
! [-Hu-v)kf/kﬂ L% .

& 2,2 .

1 =43 (1-2xZ/kg) + 5k, 4 (Up /2
TR
A= U

N
o [Z
1,13 N 2‘},
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-1
[s..]: ] [A?.‘)] [A??"] (41)
ij ij ij

Because the matrices [AS)] are complex, it is not useful to obtain

analytic expressions for the elements Sij of the scattering matrix.
(+)

Instead, we have written computer programs for the elements Aij

and then used a computer to carry out numerically the matrix mani-

pulations indicated in (41).

C. Propagation Perpendicular to the Cell Axes (k = 0)

For the special case when there is no phase variation along z,
the mode coupling equations (28)-(30) and (34)-(37) simplify. - In this
case the SH modes do not couple to the L, F(0) and F(1) modes. From
(30) and (36), it is seen that coupling between the SH modes in the three

plates is governed by the equations

Vo, = Vo=V

St 52 S3

(42)

ISl *Isz +IS3= 0

Conditions (42) for the modal voltages and currents can be interpreted
readily in terms of the interconnection of the equivalent modal trans- j
mission lines. Since the voltage is the same on all lines and the cur-
rents sum to zero, this transmission line connection is as shown in

Figure 5, and is used subsequently to find the Bloch waves propagat-

ing in the honeycomb and polarized with particle motion along z.

While the coupling of the L, F(0) and F(1) modes is also simpler ,
for k, = 0, it is still not obvious or useful to introduce equivalent cir-

cuits interconnecting the equivalent transmission lines. In this case

-24-
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Figure 5.

Kg . Zg

Equivalent network describing the coupling of SH modes
at a Y joint.
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it is still convenient to use the scattering matrix formation, where

a; and P—i are now {x3 matrices obtained by dropping ag; and bSi in
(39). Also [Ai;)] and [A(l;)] are 9x9 matrices, whose elements in
Table II can be obtained by dropping the first, fifth and ninth columns,
and seventh, eighth and eleventh rows of Table I. Also, the order of
the rows has been changed, which does not effect the value of the

scattering matrix.
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Table II

+
Element of the 9x9 Matrices [Aﬁg)] for the case kz =

1 N, 1-v L
Z k t
22,4 ~ z_o[lij_s_‘égE
? L 0
N z k_t
-0 hzr'l) 1 8
3,5 F, D /5 [1*'3?3'%@]
1 L 1
-27-
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I1I. BLOCH WAVES POIARIZED ALONG THE CELL AXES FOR PROPAGATION PERPEN-
DICUIAR TO THE CELL AXES

Because the SH plate waves do not couple to other modes at the Y junc-
tions, and because they are non-dispersive, the Bloch waves composed of
them have the simplest properties. We therefore consider this polariza-
tion first, in order to demonstrate the effects of the six-fold symmetry
on propagation characteristics.

A. Formal Solution for Dispersion Characteristics

Starting with the equivalent circuit for the Y junction, as depicted
in Figure 5, the equivalent network for a unit cell can be obtained. This
network is drawn in Flgure 6 and is seen to consist of four ports at which
the vo;;ages and currents Vi’ Ii (1 =1 - 4) are defined. The voltages and
currents can be related via an impedance matrix. Because of the symmetry

of the network, this relationship takes the form

- - (= ™ re
Vi 21y %y Z13 %y | [T
Vv Z Z Z Z I
1
2| _ 2 11 %13 I 2 _ “3)
Vs 213 %13 Z1p Z12 || 1
Lva 213 %13 %13 Iy Lla
o - o o

By straightforward, but lengthy network analysis, it can be shown that

le, Z,, and 213 are given by

12

2 4
le - iz 1-10 tan © + 7 tan © (44)

6 tan 8 (2tan26-1)

2
212 - st , 1-5 tan™ 6 > (45)
6 cos“® tan 6 (2tan“6-1)
2., = j2 1 46

® 6 cos'® tan 8 (2tan26-1)
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with
6 = ks w/2 . “%7)
We now consider the terminal voltages and currents Vi and Ii to be
associated with a wave traveling through the core. ILet
k=xk + Xoky (48)
be the wave vector of this wave. Also, let 4, and gz be the basic trans-

lation vectors of the periodic structure, as shown in Figure 2, and given by
=%w§ -_f-‘gwxo 49)

The Floquet assumption for periodic structures then implies the following

relation between the terminal voltages and currents

'Jl(_ * 91
V3 = V1 e
-ik - 21
I3=-1;e (50)
-jk - d
- =%
VA = V2 e
-jk - d
=%
I4 - 12 e

The minus sign before I1 and 12 is due to the assumption that the currents
are pogitive into the unit cell.
Substituting (50) into (43) one obtains four linear homogeneous equa-

tions in terms of the four unknowns Vl’ V2, I1 and I2’ Defining

-jk - d

-jk - d S1)
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the four equations may be written as

_ —r -
Zyy = N213 Zpp t W23t 0T
2oy - 4oZ Z.\ - 4.Z 0 -1 ll1

o o| 12 7 Wif13 P11 Yol 2 (525
Z1g 7 V9211 Zy3 7 W2y, ¥y 0 Y,
Zyg3 = W21y Zy3 - ¥,2 0 Y, {jz

In order for (52) to have a non-trivial solution, the determinant of
the 4x4 matrix must vanish. Setting the determinant equal to zero gives

the dispersion equation of the form

2 2 2 2 2 _
(213—le)cos 5 + 2213(212-le)cos § cos y + (211-213) =0 (53)
where
6 = /3 w k
2 y
(54)
-3
yY=35w ky

This equation may then be solved numerically for its root kx as a func-
tion of ky and @ or ky as a function of kx and w, .The root corresponds
to a wave in the core whose polarization is found from the eigen vector
associated with the root.

Because of the periodicity of the honeycomb, (53) will have multiple

solutions. Let u, and u, be recipracal lattice vectors

1

u =20 x :211 (55)

21,2 w3 Awd
so that

u QJ - 2nbij (56)
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where éij is the Kronecker delta. Thus, if a particular wavevector k
satisfies (53), then for any integers m and n the wavevector k + m Yy +

n u, will also satisfy (53). Also, due to the hexagonal symmetry of the

2
honeycomb, a plot of kx versus ky for fixed w will have six-fold symmetry
about the origin.

B. Numerical Evaluation of Propagation Characteristics

Numerical computations have been carried out for the dispersion curves
kx versus ky for various fixed values of w. Because the SH wave velocity
is independent of the wall thickness t, and because the impedances of all
transmission lines in Figure 6 are the same, the results are independent
of t. 1In addition, if the normalized frequency variable 6 in (47) is used,
and the wave numbers kx and ky are multiplied by w/2, the computations
will apply to all materials and honeycombs.

Due to the symmetry and periodicity of the honeycomb, the first quad-
rant in the kx—ky plane of the first Brillouin zone is more than adequate
to present the numerical results for the dispersion curves of kx versus
ky. However, in order to explain the variation of the dispersion curves
with frequency we have sketched the curves for several Brillouin zones in
Figures 7(a), (b), (c¢). 1In Figure 7(a) we have indicated several reciprocal
lattice points by dots and the vectors u

and u, The dashed hexagon

1 2°
represents the first Brillouin zone. For low frequencies (6 << 0.6155),
the dispersion curve is very nearly a circle of radius lEl g = /7‘es.

This value of lgl corresponds to a wave velocity for the Bloch wave that

is 1//7 times the shear wave velocity of the honeycomb material. Because
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Figure 7. Reciprocal lattice points and slowness cutrves for normalized
frequency 6 = ksw/Z: a) much less than 0.6155; b) just
below 0.6155; and c) between 0.6155 and n/4 = 0.7854.
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of the periodicity, the near-circles centered about each reciprocal
lattice point are all locii of solutions of the dispersion relation, (53),
as discussed after (56).

As the frequency variable 6 increases to just below 0.6155, the near-
circular dispersion curves expand and distort into nearly hexagonal shapes,
as indicated in Figure 7(b). At 6 = 0.6155, the tips of the hexagons
touch. For 0.6155 < B < E = 0.7854, the dispersion curves switch to being
nearly triangular and centered about the apexes of the dashed hexagon, as
shown in Figure 7 (c). As 6 approaches 1/4, the dispersion curves shrink
to the points at the apexes of the hexagon. For 6 increasing above n/4,
the change in the dispersion curves is reversed from that described above
until for © approaching n/2, the curves become nearly circular as in Figure
7(a). For 8 increasing above m/2, the variation of the dispersion curves
described above is repeated periodically with period n/2.

The actual dispersion curves in the first quadrant of the first Brillouin
zone are plotted to scale in Figure 8, and are seen to be in agreement with
the discussion of Figure 7. One of the features of these curves that may
be important for NDE is the fact that in certain frequency ranges the waves
are cut-off along + x and the four other directions making angles of 60°
to the + x axes. These cut-off directions are ones parallel to a set of
cell walls. However, the waves are never cut-off along y, and the six-
fold related axes.

In order to show the cut-off behavior for propagation along x, we have

plotted kx as a function of w for the case ky = 0. This plot is shown in
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Figure 9, where kx is real for 0 < 6 < 0.6155 and 0.9553 > 6 > n/2,
In the range 0.6155 < 6 « 0.9553, kx is complex with real part given by
Re(kx %) = /3. The curves are symmetric about 6 = /4. For 6§ outside
the range plotted, the curves repeat with period nm/2. By contrast, the
plot in Figure 10 of ky % versus the frequency variable ks % for propaga-
tion along y does not show the presence of a stop band. The forward and
backward wave regions connect directly at 6 = n/4., Again, the curves as
a function of 6 repeat with period of m/2.

The variations in the magnitudes of particle velocity and stress within
the unit cell is depicted in Figure 11 for propagation along x (ky = 0)
and at a frequency just below cut-off. Because the fields are symmetric
about the center of the unit cell, it is only necessary to plot the fields
over one half of the cell. From Figure 1l it is seen that the center of
the unit cell is almost stationary but has a large stress, as compared to
points at the edges of the cell, for propagatior along x. At the joint,
however, the stress on the center branch is close to the maximum value in
the cell. Note that the jump in stress at the joint is due to the fact
that stress on the center branch is the sum of the stress on the two
joining branches, and hence double that on Branch 1 for propagation along
x. The high stress at the joilnt would facilitate NDE inspection for
cracking at the joint, since a cracked joint would require stress to vanish
and hence would be a large perturbation. For frequencies well below cut-

off, lvz‘ and |sz| are nearly uniform over the unit cell.
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Iv. BLOCH WAVES POIARIZED PERPENDICUIAR TO THE CELL AXES FOR PROPAGATION
PERPENDICUIAR TO THE CELL AXES

As discussed in Section II, waves propagating the plane perpendicular
to the axis and polarized with particle velocity in the plane are composed
of L(0), F(O) and F(l) modes in each cell wall. Because of the number of
modes and the complexity of the equations describing their coupling at a
Y joint, it is not readily apparent how to represent the coupling by an
equivalent circuit, as was done for the case of particle motion along
the cell axis. Instead, the scattering matrix representation (40) is used
for the coupling. This representation is convenient since the necessary
matrix manipulations can be indicated symbolically, whereas the actual
evaluation is carried out numerically by a computer.

A. Formal Solution for the Propagation Characteristics

In order to facilitate the matrix manipulations, define the 1x3 column

matrices
a1 bri
283" (%1 | ¢} 2T | Pos ’ 7
a4y b1y

where the a's and b's are the traveling wave amplitudes in the i = 1, 2, 3

plate of Figure 3 evaluated at X, = 0. Recall that the subscripts L, 0, 1

refer to the L, F(0) and F(l) modes and that the a's are the amplitudes of

waves traveling in the -x, direction towards the junction, while the b's

i
are the amplitudes of waves traveling in the opposite direction. With
this definition, the scattering matrix S may be partitioned into 3x3
matrices Si as
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-1
b

b,

2

S

3

3

S3) | 2
52| | 22 (58)
211 | 35

The three-fold symmetry of the Y junction is evident in the form (58) of

~

the same except for the signs of the 12, 13, 21 and 23 elements.

S. In addition, all Si are symmetric and the two matrices §

2 and EB are

Because

the F(l) mode is cut-off rather than propagating, § is not a unitary matrix.

1. Scattering Matrix for a Unit Cell

Figure 12 shows a unit cell divided into two identical portions, each

consisting of three plates of length w/2 connected at a Y joint. The

numbering of the plates has been chosen for convenience in subsequent

analysis

plate at the end x

bl

. If a,
=i

= &by

i

where e is the 3x3 diagonal matrix

e

_

-jkL w/2

Defining the 9x9 matrix §' via the relation

1 1

51 S

t = 1 ?
S =18 5
L} L}

%2 %

TR L v

and Ri' are the traveling wave amplitudes for the ith
= w/2, then
teeta, (59)
"\
0 0
-jk_, w/2
e FO 0 (60)
-jk_. w/2
0 e Fl
- — A Mr -
§3' e 0 0 e 0 0
S'| = |0 e 0|8 0 e O (61)
Sl' 0 0 e 0 0 e
~ - Jl JL
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from (59) it follows for the left-hand half of the unit cell that

- -
b, a;
1 . 1 !
LY 512
bg a.

Similarly, for the right-hand half of the unit cell

- - I
by 23
| v
bg ag

- = - -4

(62)

(63)

The two halves of the unit cell are coupled at the mid-plane T, where

the boundary conditions

(64-a)

(64-b)

must hold. From (1), (2) and (10), the first condition in (64-a) and the

first condition in (64-b) are seen to imply for the L mode that

] ] L 1
(bLs + aLS) (bL6 + a

16’

(brs = as) = Prg - agg)

(65)

since 8, and q, are the same for both plates. Because the wave propagating

in the + Xg direction on plate 5 becomes the wave propagating in the - x

direction on plate 6, and vice versa, (65) is satisfied if
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When considering the flexural mode F(0), the second conditions in (64-a) and

(64-b) are seen from (1), (2) and (12) to give

(bl - al ) (bl - a' )
05 05 06 06 (67)
' ' = - ' '
(bos + 2gs) (®os + 296
since 8, and q, are the same for both plates. However, the first conditions

in (64-a) and (64-b) are seen from (1), (2) and (12) to give

' ' - ' '
(g5 * 3p5)¥5 = (bgg + ag4)ye

(68)

N ==(h! - a!

(Bos = 055 ="(bpg = 3g4) Y

Noting that Yg = = Yg» it is seen that (67) and (68) imply that

bl = o al

05 06 ’ (69)
|

305 bo6

where it is recalled that the + Xy traveling wave on one plate becomes the

- oxy traveling wave on the other plate.

Similarly, for the F(1) mode

' o _ gt
b1s 216
(70)

R
a5 P16

Equations (66), (69) and (70) may be summarized as
bl - T a'
’ 1)

- '
b= Tas
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where
1 0 0
T={0 -1 O . (72)
0 0 -1

In order to join the scattering representations (62) and (63) using the
conditions (66), (69) and (70) to obtain the scattering matrix for the unit

cell, we write (62) and (63) in the form

T - b Nl
il Isi s 0 o [{al [s5 o[
b, s. st 0 0 a s! o0 |la}
=2 ~3 ~1 =2 ~2 26
= + (73)
b O 1 L1 I L
] 1 1 1 ]
b, 0 0 83 51|z 0 s
L 1 L JL 4 L N
and
— ™~ i
A 1 N R
b! ) 0 0 s) s! al " 0 s! al )
"6 ~2 ~3 "‘2 1 “6
2,
2,
[T

Substftuting (71) into (74), we can solve for ié and gé in terms of ii’

gé, gé and gé. If this result is substituted into (73) we obtain the

scattering representation for the unit cell as

™ - —
1] L
by 2
b} a,
- [2] 2 , (75)
bl 8'
2 23
b, a)
-4
L. o ..-4..4
~45-
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where u is the 12x12 matrix given by

— — — — -1
' ' ' _at ' '
S1 S 0 9 S5 0 5 I S5 S5 0 0
1 1 ) _' 1 1
= §3 §1 0 0 + §2 0 2 51 0 0 §2 §3
~ [ ' '
° 0 5 & 0 %
L 1 1
0 0 5 § o &
L -l — —
(76)

Considerable symmetry exists within the u matrix as a result of the
symmetry of the unit cell. The 12x12 matrix u may be partitioned into 3x3

submatrices and is found to have the form

— —

41 B2 Y3 A
v v v v
w = |72 1~ N3 an)
B 0% 51 D
A T B |
In addition,
u=Iyl (78)

and u are symmetric while for i = 1, 3 the transposes of the

20 & Y A Y,

matrices Ui ¥y satisfy

W, =Twu, T
io~~i= (79)
Xi =I£1,1'

These symmetry properties can be used to check intermediate numerical results.
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2. A

Pplication of Flgguet Condition

Consider now a Bloch wave traveling through ¢he Core and Jep

k=x ¢ 4

gl), where él is a
basis vector of the unig cell defined ip 49).

Because of the reversal of
Coordingee Systems,

an additional negarive gi

8N enters for the flexural modes
as discussed after (64).

Thus, the Floquet condition takeg the form
‘jk'gl
By = e T2
(81)
, ‘jk'él ,
23 = e - H

of plate 2 via

LY
bl = ¢ a
=% ~ % . 82
-Jk-q,
a =e I b,

Using ¢1 and vz, as defined ip (51), ¢to represent the eXponentigl factors,
and sy

bstituting (81) and (82) inta {75), one finds after suitable manipulation
that

b7

e R X
A - v

I




(“'Tﬁ) =0 . (83)
¥ib;

Vo)

— -

In @3) 3' and y are 12x12 matrices that may be partitioned into 3x3 matrices

in the form

Ty, Iy 0w % |
T v T v u u
u' = ~~h =3 ~2 ~1 (84)
21 ST LR P
b —
and
— u
V1 o 0 0
0 ¥yl 0 0
L= 0 0 11 0 ®3)
¥
0 0 0 1,
¥2
L -

where 1 is the 3x3 unit matrix.

In order for @3 ) to have non-trivial solutions, it is necessary that
det(u' - §) = 0 , (86)

which is the dispersion equation for the Bloc!. waves. Because the ele-
ments of 2' depend on frequency and ¥ contains the wavenumbers kx and ky,
(86) is an equation of the form f(w, kx’ ky) = 0, and can be solved for any

one variable in terms of the other two. In practice, the equation is solved
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numerically using a root search procedure. Numerical aspects of the solu-
tions are discussed below.

B. Numerical Evaluation of the Propagation Characteristics

Computations were made for a honeycomb material having Poisson's ratio
v = 0.32, which is the value for phenolic plastic cores, and a ratio w/t = 20.
With these ratios fixed, the normalized wavenumbers kxw/Z and kyw/Z will
depend on the shear wave velocity CS of the honeycomb material only through
the normalized frequency variable ksw/2 = Csw/Zw. At very low frequencies,
two propagating waves are found. One of these waves has velocity of propa-
gation 0.862 CS that is independent of the direction of propagation. The
second wave has velocity of propagation that varies from 0.059 CS to 0.062 CS
as a function of the direction of propagation. The 5% variation in the calcu-
lated velocity is not thought to be meaningful, so that at low frequencies
the propagation is isotropic in x-y plane. The two waves are referred to as
the fast and slow Bloch wave solutions, respectively. For comparison, recall
that at low frequencies the Bloch waves with particle motion along z

propagate with velocity 0.707 Cs' For convenience, we refer to the Bloch wave

with particle motion along z as the Q-SV (quasi-shear vertical) wave. The

properties of the fast and slow Bloch waves are discussed separately below.
1. Fast-Wave Solution

The wavevector or slowness curves corresponding to the fast-wave solution
are depicted in Figure 13. As discussed in connection with the Q-SV waves, the
portion of kx-ky space shown in Figure 13, which is the first quadrant of the
first Brillouin zone, contains all of the information concerning the solutions

of (86). The six-fold symmetry of the dispersion curves about the z-axis is
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Figure 13,

0 4

Slowness curves in the first quadrant of the first Brillouin
zone for the fast Bloch wave for various values of normalized
frequency ksw/z within the first pass-band (w/t = 20, v = 0.32).
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evident from the plots for the first quadrant, and is consistent with the
hexagonal nature of the core. The normalized frequencies in Figure 13 lie
in the first pass-band of the fast-wave.

The dispersion curves for propagation along x and along y, as well as
their six-fold related directions, are shown in Figures 14 and 15. Above
the first pass-band, the dispersion curves for propagacion along both x and
y congist of a complex set of stop bands and pass-bands that are not periodic
with frequency, as in the cagse of SH waves. The non-periodicity resulrs
from the fact that the Bloch wave is composed of F(0) and F(l) plate modes,
in addition to the L mode. Furthermore, the F(0) plate mode is dispersive,
the coupling at the Y joints is frequency dependent, and the interaction
between Y joints due to the F(l) mode decreases exponentially with the square
root of frequency. The complexity associated with higher stop and pass-bands

is discussed in connection with the slow-wave solution.

As the frequency increases from zero to the first stop band, the slow-
ness curves of Figure 13 behave in a fashion similar to those of the SH
wave, Thus, the curve changes from being circular about the origin to a
figure that is slightly elongated along kx’ and six-fold related axes. At
the normalized frequency ksw/2 = 0.2735, the slowness curve touches the bound-
aries of the first Brillouin zone along kx and related directions. 1In the
range 0.2735 < ksw/z < 0.275, the slowness curve becomes a series of closed

shapes about the apexes of the Brillouin zone.
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While the fast Bloch wave has low frequency velocity greater than the
Q-SV Bloch wave, it has a lower cutoff frequency for propagation along x and
a cutoff band for propagation along y. In Figure 16 we plotted the normal-
ized wavenumbers of the L, SH and F(O) plate modes, as well as the longitu-
diral wavenumber kp of the honeycomb material versus normalized frequencies
ksw/2 for w/t = 20, Were the fast Bloch wave to be composed solely of the L
mode in the plates, at low frequencies, one would expect the fast Bloch wave
velocity to be about 1.7 times that of the Q-SV Bloch wave; the value 1.7 being
the ratios of the L mode to SH mode velocities. That the fast Bloch wave is
only 1.2 times that of the Q-SV Bloch waves is therefore due to the presence of
flexural waves. The coupling between F(0) and L modes increases with frequency,
so that the phase shift due to the very slow F(0) mode becomes more significant
in the Bloch wave at higher frequencies. This is believed to explain the rapid
increase in dispersion above ksw/Z = 0.20, and a value of cutoff frequency below
that of the Q-SV Bloch wave.

In tracing the higher stop and pass-band behavior for propagation along x
it was found that the first branch of dispersion equation became complex, as in
Figure 14, and did not connect to the higher pass-band solution. The second
pass-band results from a second branch of the dispersion equation, which is
imaginary for frequencies below ksw/z = 0.341. For propagation along y, the
same branch of the dispersion equation connected from the first to the second
pass-band. The double solution for ky in the vicinity of ksw/Z = 0.6 indicates
that the slowness curves for these frequencies consist of several disconnected

curves, and are probably quite complex. We have not however computed the shapes.
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The particle motion associated with the fast Bloch wave is depicted 1in
Figures 17 and 18 for wave propagation along x and y, respectively, and a
normalized frequency ksw/2 = 0.2, These curves show, in exaggerated scale,
the actual displacement of points along the center linc of the plates at
some instant of time. While the motion is different for the two directions
of propagation, in each case it is symmetric about a line that is parallel
to the direction of propagation and that divides the unit cell in half. 1In
addition, the center of gravity of the unit cell appears to move back and forth
in the direction of wave propagation. Because of this motion, the fast Bloch
wave resembles a longitudinal wave in an elastic continuum, and will be re-

ferred to as the Q-P (quasi-longitudinal) wave.

2. Slow-Wave Solution

The slowness curves corresponding to the slow Bloch wave are depicted
in Figure 19 for frequencies below the first stop band along y. The cor-
responding dispersion curves for propagation along x and along y are shown
in Figures 20 and 21, respectively. It is seen that the behavior of the
slowness curve is similar to that in Figures 8 and 13 for the Q-SV and Q-P
Bloch waves. However, the anisotropy effects are much more pronounced and
the normalized frequency ksw/2 for corresponding curves is an order of magni-
tude lower.

The difference in frequency can be understood by referring to the dif-
ferences in the wavenumbers of the various plate modes, as shown in Figure 16,
Over the ordinate range 0 < kpp w/2 < 1.0, the flexural wavenumber is more than
20 times larger than the shear wavenumber. If the slow Bloch wave were composed

solely of the F(0) mode in the plates, one would expect its slowness curve at
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W

Figure 19. Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for various values of normalized
frequency kswlz within rhe first pass-band (w/t = 20, v = 0,32).
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frequency f1 to have a shape similar to tha+ of the Q-SV Bluch wave at frequency
greater than 20 fl. However, the frequency ratio is somewhat less than 20
due to the presence of the L and F(1) modes.

As the frequency increases from zero to the first stop band for propa-
gation along x, the shape of the slowness curves of Figure 19 changes from
circular about the origin to a figure that is elongated along kx, and six-fold
related axes. At the normalized frequency ksw/2 = 0,0316, the slowness curve
touches the boundary of the Brillouin zone. In the range 0.0316 < ksw/Z < 0.0671,
the slowness curve breaks into a series of closed curves about the apexes of

the first Brillouin zome. These curves shrink to a point at ksw/2 = 0.0671.

For frequencies in the range 0.0671 < ksw/2 < 0.112, the Bloch wave is
evanescent for all directions of propagation in the x-y plane.

The particle motion associated with the slow Bloch wave in the first
pass-band is depicted in Figures 22 and 23 for propagation along x and y
respectively at normalized frequency ksw/Z = 0.03. 1In these figures we
have plotted, at an exaggerated scale, the actual displacement of the
centers of plates comprising a unit cell at a particular instant in time.

From Figure 22, it is seen for propagation along x the motion is almost trans-

verse to the direction of propagation. From Figure 23 it is seen that the

motion for propagation along y is anti-symmetric about a plane through the
center of the cell and parallel to y, and has a strong shear component. On
the basis of cell motion, we can identify the slow Bloch wave at low fre-
quency as a shear wave in an elastic continuum, and will refer to it as the
Q-SH (quasi-shear horizontal) wave.

For frequencies above the first pass-band, the dispersion curves of
Figuregs 20 and 21 exhibit a complex series of stop bands and pass-bands, which

are not periodic in frequency. For the case of propagation along x, a single
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solution to the dispersion equation, which can be traced continuously as a
function of frequency, gives the wavenumber kx of propagating waves. How-
ever, for propagation along y it is necessary to trace two solutions to the
dispersion relation. The first solution gives the propagating wavenumber ky
in the first pass-band 0 < ksw/Z < 0.0671, while the second solution is cutoff
there. At ksw/z = 0.112, the second solution switches from cutoff to propa-
gating, i.e. ky becomes real, and remains so until ksw/2 = 0.185. However,

at k w/2 = 0.178, the first solution again becomes real, but corresponds to
s

a solution in a Brillouin zone above the first zone in the kx-ky plane. At
ksw/2 = 0.185, the two solutions are real and equal. For ksw/2 above 0.185,
the two solutions diverge, one corresponding to the higher Brillouin zone
and the other to the first Brillouin zone.

The foregoing dispersion characteristics can best be understood by
examining the slowness curves as drawn for a progression of frequencies about
ksw/z = 0.185. As ksw/2 increases from ksw/Z = 0.112, the slowness curve
starts as a circle, as shown in Figure 24, whose radius increases with fre-
quency. The shape of the circle distorts with increasing frequency until the
slowness curve touches the boundary of the first Brillouin zone at ksw/2 =
0.178, as shown in Figure 24. Because the slowness curve touches the boundary
at intermediate angles, rather than along the kx and related six-fold axes,
for frequencies above 0.178 it takes the form of closed curves about the
vertices of the Brillouin zone and about the points kx =1/3, ky = 0 and six-
fold related points. In the range 0.178 < ksw/Z < 0.185, the closed curves
about the vertices shrink to a point, and then expand above 0.185. The closed

curves about kx = /3, ky = 0, and related points, decrease in size in the
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Figure 24. Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for normalized frequencies in
the range 0.112 < ksw/Z < 0,185 (w/t = 20, v = 0.32).
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range 0.178 < ksw/Z < 0.188. For ksw/Z between 0.188 and 0.207 no real solu-
tion for kx exist, as is seen from Figure 20.

The closed curves about the vertices of the Brillouin zone expand in size
for ksw/2 > 0.185, as seen in Figure 25, until they touch the kx and related
axes at ksw/z = 0.207. Above 0.207, the slowness curve is again a closed
curve about the origin, whose radius decreases with frequency to zero at
ksw/2 = 0.0342. The foregoing discussion illustrates the complex dependence

of the Bloch wave properties on frequency in the higher pass-bands.
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Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for normalized frequencies in
the range 0.185 < ksw/2 < 0.341 (w/t = 20, v = 0.32).
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V. BLOCH WAVE PROPAGATION OBLIQUE TO THE CELL AXES

For propagation oblique to the cell axes, the scattering matrix
for the Y joint is 1 2x1 2 and the matrices a, and Ei are 1x4, as de-
fined in (38). With this recognition, the matrix algebra needed to
find the propagation characteristics of the Bloch wave is the same as
that developed in Section IV, provided the matrices defined there are
appropriately generalized. Thus, the matrices §_.1 in (58) that are
used to partition S are 4x4, as are the matrices 21‘ in (61). The e

matrix defined in (60) must be generalized as

i -jxsw/2 )
e 0 0 0 .
0 ~jk, w/2
e L 0 0
ex= (87)
-jnow/2
0 0 e 0
-jnlw/ 2

0 0 0 e

- o

where Koy Kys Ko and k) are the modal wave numbers along x, as
defined in (7), (9), (11) and (15).

Because the SH mode is symmetric, it has the same junction pro-
perty (66) as the L, mode so that the T matrix defined in (72) becomes

r "

i 0 0 0

|
n

(88)
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Finally, in the y matrix of (85) one must use the 4x4 unit matrix for

{ and recognize that
Vy o= exp[-J(zgokx + Xoky) . 91, 2] . (89)

The wave number kz is contained in the scattering matrix S and
hence in u', so that the dispersion equation (86) is of the form
flw, kx' ky' kz) = 0. In the rest of this section we report on numerical
solutions of the dispersion relation for kx vs. kz with ky = 0 and fixed
values of , and for ky vs. kz with kX = 0 and fixed values for w.
These results, together with those of the previous section, indicate
the shape of the slowness surface by means of cuts in the (kx’ ky)
plane, in the (kx, kz) plane and six-fold related planes, and in the
(ky, kz) and six<£old related planes. Calculations were carried out for
a honeycomb material having Poisson's ratio v = 0.32 and for cell-

wall aspect ratio w/t= 20,

A. Low Frequency Propagation: Continuum Model

For normalized frequencies below about ksw/ 2= 0,01, all of the
Bloch waves propagating in the (kx, ky) plane show linear variation
of kx and ky with w, and hence are non-dispersive. We have there-
fore computed the slowness curves for ksw/ 2= 0,01, and plotted
kz/ks versus kx/kS or ky/ks' The resulting curves are independent
of frequency for ksw/2 <0.01.

In Figure 26 we have plotted the slowness curves for the two
fastest Bloch waves. The same numerical values were obtained for
propagation in the (x, z) plane as for propagation in the (y, z) plane.

The inner curveis a quasi-longitudinal wave (Q-P), as noted from

=70~
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the particle displacement for propagation along x and y. Also, for
propagation along z, the value kz kS = 0. 59 is the same as for the
wavenumber kL of the symmetric Lamb mode in the cell walls, which
is essentially an extensional or longitudinal wave at low frequencies.
Based on the polarization properties for propagation in the (x, y} plane,
the outer curve in Figure 26 represents a vertically polarized shear
wave (Q-SV). The fact that the intersection of the curve with the
kx'/ks or ky/ks axis and with the kz/kS axis have the same values
(41) indicates that the honeycomb acts as an elastic continuum(“ ).
Because the slow Bloch wave travels at one tenth the velocity of
the fast Bloch waves in the (x, y) plane, its slowness curve cannot be
drawn with equal scales for kx and kz' as in Figure 26, For this
reason we have drawn the dispersion curves with different scales in
Figure 27. The slow Bloch wave is labeled Q-SH because its parti-
cle motion is similar to horizontally polarized shear wave for propa-
gation along x or y. The discrepancy between the slowness curves
for propagation in the (x, z) planes and (y, z) plane amounts to 2. 5%
v 1s thought to result from the approximations used to compute
.res, 1t is seen that both shear waves cross the kz axis at the

. -+ nt, in accordance with the properties of a hexagonal  ntin-

*+ ¢xamine further the correspondence between the slow-
Figares 26 and 27 and an elastic continuum of hexa-
- ve have used the propagation characteristics along
-+ define the stiffness constants of the continuum.

‘« the slowness curves for continuum were com-
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puted and compared with those of Figures 26 and 27.

Static measurements of the mass density Py and stiffness con-
stant C33 for a WRII kraftboard honeycomb(lz), as listed in Table
IIl, were used in conjunction with the properties listed in Reference
(11) to find the remaining stiffness constants, which are listed in
Table III. The mass density p of the kraftboard listed in Table III
was obtained by dividing (% by the fraction of honeycomb's volume
occupied by the phenolic material, Assuming the kraftboard act as an
isotropic medium with v = 0,32, and recognizing that kz for the Q-P

wave propagating along z is equal to k., ycan be found from the re-

L’

lation

Py
|/___ =, [8 [Jl=v
VT -kL_w n 2

33

Knowing 4 and v, one can find \ from the expression

A

VT a0vt)

for Poisson's ratio. These values are also listed in Table III.
The average of the values of kx/ks was used in obtaining C66
in Table III. With the values listed in Table III, we have computed
the slowness curves for a hexagonal continuum and compared them
with Figures 26 and 27. The Q-P and Q-SV curves were indistinguish-
able, while the Q-SH curve fell between the kz vs. kx and kz vS. kY
curves of Figure 27, We therefore conclude that the continuum model
is an accurate representation for the honeycomb at low frequencies.

it should be noted that for a WRII kraftboard honeycomb, the nor-

malized frequency kaw/2 = 0,01 corresponds to an actual frequency
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TABLE III
MATERIAL CONSTANTS FOR A WRII KRAFTBOARD HONEYCOMB

Kraftboard Honeycomb
3 3
p = 0.899 gm/cm Py = 0.061 gm/cm
v=2032 C33 = 3, 79x109 dynes/cm2
u = 3. 382100 dyne/em? c,, = 9 75x10°
A= 1.9x10° C,p= 9-66x10°
_ 8
C13 = 5, 94x10
_ 8
C44 = 6. 60x10
- ©
C66 = 4,60x10
)
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f= "30 Hz, For higher frequencies, the Q-SH wave becomes disper-
sive, while the Q-P and Q-SV waves do not exhibit dispersive effects

until a frequency of nearly 10 KHz,

B. Dispersive Effects for the Slow Bloch Wave

To illustrate the dispersive effects on the slow Bloch wave we
have computed slowness curves for ksw/ 2= 0,03, 0.06, 0,13 and 0, 26,
The results for ksw/ 2= 0,03 are plotted in Figure 28. The extent
of the curves along kx and ky is markedly different. In the insert
of Figure 28 we have sketched a perspective view of the slowness
surface in the first Brillouin zone. The surface is seen to have the
shape of a six-pointed star. Slowness surfaces in the neighboring
Brillouin zones have the same shape, and oriented such that the
points of the stars face those of the star in the first zone,

As the frequency increases from 0. 03, the tips of the stars in
neighboring Brillouin zones grow towards each other until they touch
at 0.316 and form tunnels for frequencies above 0,316, The tunnel shape
is indicated in Figure 29, which is drawn for ksw/z = 0,06, As the
frequency increases further, the tunnels increase in width until they
merge at 0,071 when the wave becomes cut-off along y, as indicated in
Figure 21, For frequencies between 0,071 and 0,112, where the secoad
pass band starts, the slowness surface in (kx’ ky, kz) space undulates
but does not touch down to the (kx, ky) plane,

The slowness surfaces of the slow Bloch wave in the second pass
band consist of two surfaces. The outer surface does not touch the
(kx, ky)' while the inner surface in the first Brillouin zone is closed

about the origin, Identical closed surfaces exist in each of the
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Brillouin zones. The intersections of these surfaces with the (kx, kz)
and (ky, kz) planes are shown in Figures 30 and 31 for ksw/z = 0.13.
The outer and inner surfaces touch in the (ky, kz) plane and six-fold
related planes. The touching points are like the points of conical
refraction in the optical slowness surfaces of a biaxial crystal. The
surfaces for kz >0 may be thought of as a head (inner surface) with a
hat (outer surface) that rests on the head at six points.

As an example of the slowness curves in the third pass band of
the SH-Bloch wave, we have drawn Figures 32 and 33 for ksw/2 = 0. 26.
Slowness curves for propagation in the (x, z) 2nd six-fold related planes
are indicated in Figure 32, while Figure 33 has been drawn for propa-
gation in the (y, z) and six-fold related planes. The Q-SH slowness
surface is seen to consist of two parts. The upper part represents
an undulating surface that does not touch the (kx, ky) plane. The lower
Q-SH slowness surface resembles a tube enclosing the boundary of
the Brillouin zone. The character of the slowness curves for the fast

Bloch waves is discussed in the next section.

C. Dispersive Effects for the Fast Bloch Wave

As seen from Figures 9 and 10, the Q-SV Bloch waQe propagat-
ing in the (x, y) plane does not have significant dispersion for
ksw/ 2<0.4. The Q-P Bloch wave propagating in the (x, y) plane how-
ever shows significant dispersion even at ksw/ 2= 0..2. For oblique
propagation the dispersive effects should be evident in both waves,
even at frequencies as low as ksw/Z = 0, 2, since both waves. are

composed of the same plate modes in the honeycomb walls,
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4 kz/ks
4.14
4.0
3.5
3.0
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Surface
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X
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Figure 30. Slowness curves in the (k,,k,) plane for
frequency ksw/2 = 0.13 in the second pass-
band of the Q-SH Bloch wave showing the
pregence of a fourth surface (w/t = 20,

v = 0,32).
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Figure 31. Slowness curves in the (k_,k ) plane for frequency
kgw/2 = 0.13 in the second pass-band of the Q-SH

Bloch wave showing the presence of a fourth surface

(w/t =20, v = 0,32). This figure is for the same
frequency as Figure 30.

-81-

ey




v
] ~z/ks

3.5

3.0

2.5
2.3

2.0

1.%

1.08 —
1.0

0.59—
0.5}

k /k
%

A

w

0 1.0 1.42 2.0 7.55 3.0 ) -

2.03 4.03

Figure 32. Slowness curves in the (kx,k ) plane for frequency
k_w/2 = 0.26 in the third pass-band of the Q-SH
Bioch wave (w/t = 20, v = 0.32).
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Figure 33. 8Slowness curves in the (k ,kz) plane for frequency
k.w/2 = 0,26 in the thirdypasa—band of the Q-SH Bloch

wave (w/t = 20, v = 0.32), This figure is for the
same frequency as Figure 32,
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The nature of the dispersive effect can be understood by exam-
ining propagation for frequencies in the vicinity of ksw 2= 0. 216,
where the wavenumbers of the Q-P and Q-SV Bloch waves propagating
in the (x, y) plane are equal. The slowness curves of the Q-P and
Q-SV Bloch waves are drawn in Figure 34 for ksw,/ 2= 0,21. Because
anisotropy effects are not significant at this frequency, the same
curve holds for propagation in the (x, z)} plane and for propagation in
the (y, z) planes. Comparing Figure 34 with Figure 26, which is
drawn for ks~W/2 = 0,01. it is seen that the Q-P wave shows disper-
sive effects for propagation in the (x, y) plane., However, for propa-
gation along z, the Q-P wave shows no dispersion since its wave-
number is that of the symmetric Lamb wave in the cell wall. For
this direction of propagation it is the Q-SV wave that exhibits disper-
sive effects.

At the frequency ksw/2 = 0. 23, the slowness curves shown in
Figure 35 reflect the fact the wavenumber of the Q-P wave propagat-
ing in the (x, y) plane is greater than that of the Q-S5V wave. However,
for propagation along z, the relative size of the wavenumbers is re-
versed. Thus, along the inner branch of the slowness curve in Figure
35 the Bloch wave polarization switches from that of a shear wave
propagating in the (x, y) plane with particle motion along z to that of a
longitudinal wave propagating along z. Alternatively, the outer branch
has the polarization of a longitudinal wave for propagation in the (x, y)
plane, since then the SH plate modes are not part of the Bloch wave.
However, for propagation along z, the outer branch has shear

polarization.
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Thus, in the first pass band of the fast Bloch waves, a significant
aspect of the dispersion is to cause the polarizat ion type of the wave
to change with direction of propagation. As a result, the Bloch waves
cannot be labeled as a quasi-shear or quasi-longitudinal for frequencies
above ksw/2 = 0, 216. This conclusion is further supported by the
slowness curves for the fast Bloch waves at the frequency ksw/ 2= 0. 26,
which are shown in Figures 32 and 33. From Figures 30 and 31 it is
seen that the dispersion of the fast Bloch waves first becomes significant
at ksw/z = 0.13 for shear wave progagation along z.

Because the fast Bloch waves do not show significant dispersion
for normalized frequencies below ksw/2 = 0.13, their propagation
can be modeled by that of Q-P and Q-SV plane waves in a hexagonal
continuum for ksw/ 2< 0.13. However, the continuum meodel can be
used for Q-SH wave propagation only in the range ksw/ 2<0,013.
Thus, in dealing with bounded honeycombs, the continuum model can
be used for ksw/ 2 < 0,013 unless Q-SH waves are not excited, in
which case the continuum model can be used up to ksw/ 2= 0.13. This

distinction is used in the next section.
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VI. WAVES GUIDED BY A FACE PLATE BONDED TO A
HOMNMEYCOMB

A complete treatment of wave propagation in honeycomb panels
requires taking into account both of the face plates and the finite
honeycomb thickness. The properties of these waves result from a
combination of effects due to coupling between the face plates and
the honeycomb, and to the thickness of the honeycomb. However,
for the NDE task of finding areas of debonding, one is only interested
in coupling between the face plate and honeycomb. This coupling can
be studied in'isolation by examining the loading that a semi-infinite
honeycomb places on the modes of the face plate.

In this section we consider the properties of the lowest modes
guided by an aluminum face plate that is bonded to a semi-infinite honey-
comb, as shown in Figure 36. The honeycomb is assumed to act as
a hexagonal continuum having the parameters listed in Table III for a
Shelter (ore honeycomb. The face plate is assumed to have thickness
h=1/16 in. and to be bonded to the honeycomb by means of an ad-
hesive layer of vanishing thickness, However, in practical cases the
adhesive layer can have major influence on the guided wave, as is
shown in the next section for foam-core panels,

The SH mode in the aluminum plate couples to the slow Q-SH
Bloch wave in the honeycomb. However, both the symmetric Lamb
mode and the flexural mode in the aluminum plate couple to the fast
Bloch waves. Thus we may treat the SH modes separately from the
Lamb and flexural modes.

The Q-SH Bloch wave is non-dispersive for ksw/2 less than about

0. 013, using the dimensions assumed for the Shelter Core honeycomb
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gives an upper frequency limit of about 1, 000 Hz., Thus our study
for guided SH waves in the aluminum plate is limited to frequencies
less than 1, 000 Hz, On the other hand, the fast Bloch waves are
non-dispersive for ksw/2 <0.13 or f <10 kHz, so that the continuum
model for the fast Bloch waves may be used up to this frequency.
Hence, our study of the symmetric Lamb and flexural modes of the

aluminum plate apply up to 10 kHz,

A. SH Mode of the Aluminum Plate

The fields associated with the SH mode in the aluminum plate can
be represented as a combination of the SH plane waves in aluminum

propagating with wave vectors (k_ k'zs) where

v 2 2
K= /()% -k (90)

and k; is the shear wavenumber of aluminum. The wavenumber kx
along x must be the same for both plane waves, and for the Q-SH Bloch
wave in the honeycomb in order to satisfy the boundary conditions at
the free surface and at the plate-honeycomb boundary. The field quan-
tities entering into the boundary conditions at z = + h/2 are v, and

Tyz‘ 1f AY and A” are the amplitudes of these two waves, then the

field quantities in the plate are given by (3}

-ik! 2z . jk! z  -jk x
vy % 2) = (Ate " %% 4 ATe %8 )¢ X (91)
and .
".! e ! 1! 3
p'k -jk! =z _ jk! oz -jk x
Tyz(x. z) = __m_z_s_ (-A+e Z8 4t A"e 28 e X (92)
where ;' is the shear modulus of aluminum.
-90-




If D™ represents the amplitude of the Q-SH wave in the honeycomb,

then the field quantities for z < -h/2 are (13)

_ jk_z  -jk x
vy(x,z) =De ? e X (93)
and
C,, k jk z  -jk_x
. _ 447z -2 b 4
Tyz(x, z) = — De e (94)
Here C44 is the stiffness constant listed in Table III and kz is the

wavenumber along z of the Q-SH wave., Using the continuum model for

the honeycomb, k can be found from the dispersion equation

2 2 2
Coelx ¥ Caq¥y ~Pp =0 (95)

where PH and CSG are taken from Table III

The boundary condition at the free surface z = h/2 is Tyz(x. h/2)= 0,
while at the interface z = -h/2 we have that vy(x. z) and Tyz(x, z) are
continuous. After some manipulation, these conditions can be written

in the form

H 1
- \ 1Tr 1
. ] 1
"Jk‘ h 1 3
~-----a-:---!-.p-----------a-------—--
jk® h ¢ | -jk h/2 jk* h/2 )
Z8 13l e % e 28 A =0 {96)
o.---a-ui.--’-a------—n-.-----‘--.-----
<jkt h! 1+ C..k -jkh/2 jk' h/2
.e 28 515' .66:32e z e 28 !_D
9 : : uk _] o

The dispersion equation for the wave is obtained by setting the deter-
minant of the 3x3 matrix equal to zero. Recognizing that kz and k‘zs

are functions of kx' the dispersion equation takes the form f(kx.w) = 0,

«9]1~




Because the Q-SH Bloch wave is extremely slow, for kx in the
vicinity of k:;' this Bloch wave will be propagating along z. As a
result, the SH mode in the aluminum plate will be converted into a
leaky surface wave that radiates its energy into the honeycomb. The
continuous radiation of energy causes an exponential decrease in the
amplitude of the surface wave with distance in the propagation direc-
tion. The exponential decrease exhibits itself as an imaginary part
in the wavenumber kx of the surface wave., Thus the root of the dis-
persion equation f(kx.w) = 0 is the complex number kx = B - ja, where
B is the phase constant and a the attenuation constant of the leaky
surface wave,

Numerical solutions of the dispersion equation for 8 and a are
plotted in Figure 37. The leaky wave is somewhat slower than the SH
wave in an isolated aluminum plate, Because ¢ and  are on the same
order, the wave is heavily attenuated even in propagating one wave-
length. Thus, the coupling to the honeycomb strongly affects the wave
in the aluminum plate. In principle, the significant perturbation re-
sulting when the plate is bonded to the honeytomb makes possible detec-
tion of debonded regions. However, the wavelength at 1 KHz is 2.4
meters, which indicates that only large areas could be inspected. To
achieve high resolution, it is necessary to use much higher frequency

waves, for which the continuum model of the honeycomb is not valid.

B, Lamb Modes of the Aluminum Plate

When treating the symmetric and anti-symmetric (flexural) Lamb
modes, it is necessary to include SV and P plane waves in the plate

that have components of propagation in the +z direction as well as in
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Figure 37. Attenuation constant o and propagation constant 8 of
the SH leaky wave guided by an aluminum face plate
bonded to a semi-infinite honeycomb.
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the -z direction. The fields in the honeycomb are composed of the
Q-P and Q-SV Bloch waves propagating in the -z direction. The am-
+ o+

plitude of these six waves are designated as A", B, C~ and D™ in
Figure 36. The boundary conditionsonv_, v_, T and T _ at

x' 'z’ xz zz
z = + h/2 requires that all of the plane waves have the same wave-
number kx along x. By requiring that the plane waves satisfy the

boundary conditions, one obtains the dispersion equation for the guided

waves.

1. Formal Solution for the Guided Waves

The fields in the plate are given by the sum of four plane wave

(3)

constituents, The particle velocity is given by

] t
-jk_ "z jk_ =z
vx(x, z) = [A+e 28 L ATe 2% }

k[, -ik, 2 k2] -ikx
+— [B'e ZP 4 B e ZP e X (97)
k
p -
and
k ik ik
-jik_ =z jk_ =z
v _(x, z) = __:‘_[A*'e 28" _ pA"e 28 ]
z k
z8
] [ ] 1]
k, + -jkz z _ jk'z z -jkxx
+-2R |B'e " ZP _Be %P |le (98)
kp
Here
v 2 2, v 2
ko= (ks) -k s kzp' (kp) -k, (99)
!
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! )
where ks and kp are the wavenumbers of the shear and longitudinal
waves in the aluminum. The components of stress entering into the

boundary conditions are

1 !
1 -jk =z jk =z
T, (% 2) = {- A~ [(k's>2 - k2 } [A+e 2" pnges” |

z
wk, g ]
, kz' kx + -jk'z 2 jk' z -jk_x
-2 —?T B'e P _ B~e ZP e X (100)
(kp)

and . . .
2u k -jk__z ik =z
T, (%, 2) { x [A” e %% AT 2B

2
r . ] - t ]
k k -ik__z ik, 27 =ik x
-;B[x' + 2u'<—‘,"‘2> J[B+e P 4 B7e ZP ] e *
k
P

(101)
where \' is the Lame coefficient of the aluminum.
To obtain the fields in the honeycomb, we make use of the pro-

(13)

perties of a hexagonal continuum Thus, the wavenumbers kzs

and kzp of the Q-S and Q-P waves can be found from the dispersion

equation
2 2 2 2 2 2
(Cyika ¥ Caqky =P NCygk + Coks - p 0%
2,22
- (Cy 5+ Cyp) k:kz-o. (102)

The components of particle velocity are

ik =z ik =z -ik
v (x z) = l:c'.;J zp +13‘eJ z8 ]e Y (103)
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and

_ jkzpz _ jkzsz kax
vz(x,z)= [C e + D ye ]e (104)

where

2 2 2
Ci1ke t Cuqk, Py
(C13 + C44)kxkzs

(105)

and

(G v Gy kK,
5 = 2 - > (106)
PPL c33kzp TPRw

Finally, the components of stress entering the boundary conditions can

be found from

C jk__z
T (x,z)= —32 [C’(-k s+k _Je 2P
X2 w X zp

_ jk_ oz -jk x
#D (-k_y+k__)e 2° ]e x (107)
X Zs

and
c C ik__z
T (x2)=~22 |C™ (k=2 +k__b6)e ZP
Z2Z w x C zp
33
C ik :
- Mk, z| ~jk x (108)
+ D (k L3 zs X
( kx Cis thgvl e }e

The boundary conditions at z = h/ 2 require that sz(x. h/ 2) and
Tzz(x' h/ 2) vanish. At the interface z = -h/2, the velocity components
vx(x, -h/2) and vz(x, -h/ 2) together with the stress components
T z(x. -h/ 2) and Tzz(x, -h/2) must be continuous, These conditions

x
take the form of six homogeneous equations in the six unknown
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amplitude coefficients. These equations can be written in the form

1 / 7
jk_ h/2
A+e Z2S

ik h/2
A"e VA
t

ik _h/2
B+e zp
[ ] -

(L] ok n/2f O (109)
B e zp

-jk__h/2
C’e %P
_ -jk__h/2
D e FA-}

where the 6x6 matrix L is given in Table IV. The elements in the
matrix depend on (y and kx‘ Hence, setting the determinant of L
equal to zero in order for (109) to have non-trivial solutions, gives

the dispersion equation for the guided waves in the form f(kx,w) = 0,

2. Numerical Evaluation of the Dispersion Characteristics

—

Results obtained for the dispersion characteristics of the leaky
Lamb mode are summarized in Figure 38, where we have plotted the
phase constant 8 and attenuation constant a as a function of frequency,
For comparison we have also plotted the wavenumber k'L of the sym-
metric Lamb mode of a free aluminum plate, It is seen that the honey-
comb slows the wave so that > k'L and causes it to radiate or leak
into the honeycomb, The attenuation becomes constant with frequency
above 2KHz and corresponds to a 1/e attenuation length of 0.8 m. At

10KHz, the wavelength 2x/B = 0,56 m, so that wave is strongly attenu=~

ated per wavelength,
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The flexural mode of the aluminum plate is slow compared to the
Q-SH and Q-SV waves of the honeycomb for frequencies below 10 KHz. As
a result, it is expected that this mode will not leak into the honeycomb,
but remain a bound surface wave in the plate. This supposition is borne
out by the values obtained for the root of the dispersion equation, from
which it is found that the attenuation constant o« = 0. In Figure 39 we
have plotted 8 obtained from the dispersion equation. For comparison we
have plotted the wavenumber k% of the flexural wave in a free plate and
the wavenumber kR of the Rayleigh wave propagating on a z-cut hexagonal
continuum having the elastic constants taken for the honeycomb at low fre-
quencies. Below 3 KHz the surface wave is essentially a Rayleigh wave in
the honeycomb. At higher frequencies the plate acts as a perturbation on

the honeycomb and B deviates from k The surface wave is slow compared

R
to the leaky Lamb mode shown in Figure 38. At 10 KHz, the wavelength of
the surface wave is 0.057 m or 5.7 cm, which is an order of magnitude
smaller than that of the Lamb mode.

For application to NDE, it is necessary that the wavelength be on
the order of the cell diameter, which is about 1 c¢m. Thus, the flexural
mode would be useful at frequencies somewhat above 10 KHz. However, the
Lamb and SH modes would require frequencies above 100 KHz to achieve such
small wavelengths. Such high frequencies lie in higher pass or stop bands
of the honeycomb, where the periodicity of the honeycomb is significant,
and must be accounted for in computing the leaky wave characteristics. It
therefore seems most convenient to use the flexural mode for NDE applica-
tions, This mode also offers the advantage of a large difference between
ké and B, so that debonded regions of the honeycomb are easily distinguished

from bonded regions.
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VI, FOAM CORE PANELS

We consider here wave propagation in form core panels in the
frequency rang 100 KHz tol MI—Iz for application to NDE, In this
frequency range, the acoustic attenuation in the foam is large, As a
result, elastic waves excited in one face plate will be highly attenuated
by the time they reach the opposite face plate, Because of this pro-
perty, the wave propagation can accurately be determined by consider--
ing a single face plate bonded to a semi-infinite foam block, as was
done for the honeycomb in the previous section. For this geometry
we examine the perturbation due to the foam in the modes guided by the
face plate,

Two methods exist for bonding the foam to the aluminum. For one
method the chemical agents used to produce the foam are allowed to
react directly on the aluminum, In the process of reacting, the foam
becomes bonded to the aluminum, In the second method, preformed
foam slabs are glued to the aluminum, This second method introduces
an additional glue layer whose elastic properties greatly influence the
characteristics of the guided wave (14). in what follows, we consider
separately the aluminum-foam case and the aluminum - glue - foam
configuration,

It is assumed that the aluminum plate has thickness 1/16 in, and
the elastic constants used for the foam are the nominal values listed
for rigid polyurethan foams(ls), The glue was assumed to be a
syntactic epoxy (15). Elastic constants used for the various materials ’
are listed in Table V, The method of analysis used to find the propaga-
tion constants of the guided waves is the same as that discussed in the

previous section, For the aluminum - foam case, the expressions of
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the previous section can be used directly by substituting the mass
density of the foam for Py and setting Cn = C33 = kf + Zu.f , C12 =

C13 = xf and C44 = M where )\f and e are the Lame constants for the

foam, For the aluminum - glue - foam configuration, a similar

analysis is applied that accounts for the plane waves in the glue layer,

A, Aluminum - Foam Configuration

In Table V we have listed the shear and longitudinal wave veloci-
ties of the materials, as computed from the elastic constants that are
listed there, It is seen that the wave velocities in foam are much
smaller than those in aluminum, so that the SH and symmetric Lamb
modes guided by the plate will radiate or leak energy into the foam,
Over the frequency range considered here even the flexual mode of the
plate is fast compared to the waves in the foam, so that this wave will
also be of the leaky type,

The wavenumber k_ o/ the leaky waves takes the form k_= B-jo,
where B is the phase constant and a the attenuation constant that results
from the radiation into the foam, Because of the low density of the
foam, its presence does not significantly perturb the value of B, In
Figure 40 we have plotted the phase constant B for the lowest flexural
mode F(0) and lowest symmetric Lamb mode L (0) normalized to the
shear wavenumber k‘s in the aluminum, This plot applies to both the
free plate, and to the foam covered plate. Note that B for the lowest
SH plate mode SH(0) is equal to k's .

The attenuation constant @, normalized to k',, for the leaky weaves
is plotted in Figure 41, Because of the low values for @, the waves can
propagate over several hundred wavelegths before experiencing signifi-

cant attuation, For example, the SH(0) mode at 0,5 MH‘ propagates
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TABLE V

Material Properties for Foam Core Panels

Aluminum Foam Glue
p! (kg/m3) 2. 70 x 10° 48 5.8 x 102
\ (N/ m?) 6.13 x 1010 3,17 x 108 2.2 x107
u N/ m2) 2.85 x 1010 1 45 x 10° 5. 6 x 10°
3 2 2
C, (m/ s) 3,25x 10 1. 74x10 9, 83 x 10
3 2 3
Cp (m/ s) 6.62 x 10 3.56 x 10 2.39x10
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Figure 40. Propagation constants B of the L(0) and F(0) leaky wave

modes of a 1/16 in. aluminum plate on which a polyurethane
foam has been formed. These curves are numerically the
same as those found for a free plate.
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Figure 41. Attenuation constants o of the L(0), SH(O) and F(0)
leaky wave modes of a 1/16 in. aluminum plate on which
a polyurethane foam has been formed.
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500 wavelengths, or about 3,3 meters before attenuating by 1/e,
Because the foam can have a high attenuation constant at those
frequencies, we have investigated the effect of loss on the curves in
Figures 40 and 4l. No significant effect was found up to a loss tangent
of unity, This observation indicates that the rate at which guided wave
in th aluminum plate sheds energy into the foam is not strongly depen-
dent on the loss tangent, However, the foam attenuation will prevent

the radiated energy from reaching the second aluminum plate in a panel,

B. Aluminum - Glue - Foam Configuation

The presence of the glue layer has two significant effects on the
wave propagation, First, even without the foam it makes the effective
plate thickness greater, so that higher plate modes can propagate.
Second it acts as an impedance match between the aluminum and foam,
so that the perturbation caused by the foam is much greater, We first
consider these effects for the SH modes, and subsequently treat the

Lamb modes,
1, SH Modes

The propagation constant 8, normalized to k's is indicated in Figure
42 for both the aluminum - glue and aluminum - glue -foam combinations,
In computing the curves of Figure 42, the glue layer was assumed to be
1/64 in, thick, which is 1/4 of the thickness of the aluminum. At low
frequencies where only the SH(0) mode propagates, in the aluminum -
glue combination B is seen to be nearly equal to k's, indicating that the
energy in the wave is carried primarily in the aluminum with only a
small fraction in the glue, As the frequency increases above 0,6 MHz ,

the SH(0) mode shows dispersion and the SH(l) mode goes above cut off,
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Figure 42.
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For the SH(0) mode, B/k's tends towards the value 3, 3,which is the ratio
of the shear wavenumber in the glue to that in the aluminum., This be-
havior of B indicates that the energy of the wave is concentrated in the
glue, The energy of the SH(l) mode for frequencies somewhat above

cut off is concentrated in the aluminum,

When the foam is taken into account the dispersion characteristics
appears to shift to lower frequecnies, Thus over the frequency range
computed, the SH(0) mode has B3, 3k's, while the cut off of the
SH(1) mode is below 0, 2 MHz‘ For frequencies above cut off of the
SH(l) mode, B is intially close to k's and then increases towards the
shear wavenumber in the glue, As before, this behavior suggest that
the energy of the wave is carried primarily in the aluminum at lower
frequency, and then becomes concentrated in the glue at higher fre-
quencies,

The attenuation constant @, normalized to k's. is plotted in Figure
43 as a function of frequency. For the SH(0) mode, @ is larger than
that in Figure 41 for the aluminum - foam conbination by two orders of
magnitude, Thus 1/e attenuation length is on the order of five times the
shear wavelength, or 5 x 3,3 ®17 times the wavelength 2%/B of the guided
wave, The high attenuation constant is a relult of the fact that the energy
of the SH(0) mode at these frequencies is concentrated in the glue layer,
whose elastic properties are much closer to the foam properties than
are those of aluminum. This interpretation is supported by the SH(1)
mode whose att enuationis lowest when the energy is concentrated in the
aluminum layer, and highest when the energy is concentrated in the glue,

From the viewpoint of NDE, the distinct properties cited above for

the aluminum, aluminum-glue, and aluminum-glue-foam combinations
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Figure 43. Attenuation constants @ of the SH(0) and SH(1) leaky

wave modes of a 1/16 in. aluminum plate covered with
1/64 in. of glue that bonds the plate to a semi-
infinite polyurethane foam.
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facilitate inpection of foam core panels for regions of de-bonding, Re-
gions of the aluminum plate lacking in glue, or having glue but not

bonded to the foam have very different values of B and @, and hence

can be distinguished by phase and attenuation measurements., For ex-
ample, consider a pair of transducers designed to launch and receive SH
waves with =3, 3k; at 0, 4MHz. When placed over a portion of the plate
glued to the foam, the output of the receiving transducer will have some
finite value due to the radiation and detection of the surface wave, Over a
portion of the plate not glued to the foam, the output will have a lower
value since the surface wave has a different wavelength and will not be
strongly excited or detected. Thus, unglued regions can be detected from

changes in receiver output.

2. Lamb Modes

Because of coupling between P and SV plane wave constituents, the
dispersion characteristics of the Lamb modes are more complex than
for the SH modes. The propagation constant 8, normalized to k's is
plotted in Figure 44 for the lowest four Lamb modes. The labeling L.(0).
F(0), F(1) and L(l) is made in accordance with their low frequency be-
havior, since the modes cannot be uniquely separated on the basis of
symmetry in the composite plate, Curves for the aluminum - glue com-
bination are shown dashed, while those for aluminum - glue - foam are
solid. The dispersion curve of the L(0) mode in the presence of foam
could not be traced past 0,65 MHz because of convergence difficulties in
the computer program, Comparing the curves of the L(0) and F(0, modes
with those of an aluminum plate as shown in Figure 40, it is seen that the
presence of the glue significantly influences the high frequency behavior

of the modes,
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Figure 44. Propagation constants 8 of Lamb modes of a 1/16 in.
aluminum plate covered with 1/64 in. of glue, with
and without bonding to a semi-infinite polyurethane

foam.
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The presence of the foam is also seen to cause major changes in
the propagation constant, as well as introduce attenuation, In Figure
45 we have plotted the attenuation constant @ normalized to k's for the
curves labeled F(0) L (0)and F(l) in Figure 44. While the curves S(w)
for the three modes intersect, @ for each mode is different at the inter-
section frequency, so that all three branches of the dispersion equation
are distinct, The F(0) branch has high attenuation at low frequency,
which decreases with frequency. Similarly, the attenuation of the F(1)
branch decreases dramatically past the cut off frequency of the F(l)
mode in the aluminum - glue combination, The low values of a for the
L (0) and F(1) modes away from 0, 64 MI-IZ are consistent with the values
obtained in the aluminum - foam combination. The F(0) mode however
shows much higher o,

The curves of Figures 44 and 45 indicated that the presence of glue
and adhesion to the foam can be determined from measurement of o and
B for the Lamb modes, as discussed in the previous section, However,
a more complete analysis of the mode properties and taeir dependence

on layer thickness is required to devise effective test procedures,
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Figure 45. Attenuation constants o of Lamb modes of a 1/16 in.
aluminum plate covered with 1/64 in. of glue, with
and without bonding to a semi-infinite polyurethane

foam,
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Appendix: Thin Plate Approximation of the Plate Modes

The geometry of an infinite plate is illustrated in Figure A-1. The
total fields in the plate can be expressed as a superposition of the modal
fields of an infinite plate. 1In general, we are concerned with modes propa-
gating obliquely with respect to the x axis. These modes will couple at
junction planes perpendicular to x, at which we tust satisfy boundary condi-
tions involving the particle velocity v and the surface traction x, T

Obliquely traveling modes in an infinite plate have x-z dependence of
the form exp[-j@yx + kzz)] where\/n2 + kzz is equal to the modal wavenumber.
In order to satisfy boundary conditions at junction planes perpendicular to x,
all modes must have the same transverse wavenumber kz. Because of scattering
at the junction, plate modes having both + x components of propagation must be
accounted for, as indicated in the spatial dependence cited above. In addi-
tion, the fields of the plate modes have a variation with y, i.e., in the
direction through the plate.

In the microwave network representation of guided acoustic waves, the
six quantities v and 50-3 entering the boundary conditions are organized into

1x3 matrices G and Q, which are

G= v = g(y,2) V(%)

. (A-1)

Q= |T = q(y,z) I(x)
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Figure A-1 Geometry of an infinite plate and the trans-
mission line representation for a given plate
mode, taking the transmission direction to be

along x.
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Here g(y,z) and q(y,z) are the 'mode vectors' describing the variation of

the fields transverse to x, and the relative amplitude of the various

field quantities. As discussed above, the z variation of g(y,z) and q(y,z)

is contained in the factor exp(-jkzz). The modal voltage V(x) and current

I(x) satisfy standard "electrical transmission line equations involving

the wavenumber » and modal impedance Z, as indicated in Figure A-1. The

voltage and current are composed of traveling wave solutions having x dependence
exp (+ jux).

The dispersion relation giving the wavenumber Juz + kzz of each mode, and
the transmission line representation of the plate modes have been derived by
Markman, et al(s”). In this Appendix, we approximate their results for », Z
and the mode vectors for the case of a thin plate, whose thickness is small
compared to the acoustic wavelength.

A. Lamb Modes of an Infinite Plate

Lamb waves in the plate are characterized by having components of particle
displacement perpendicular to the faces of the plates and components parallel
to the direction of propagation.

1. Lowest Symmetric Mode: L(0)

The symmetric Lamb modes are those for which the particle velocity in
the direction of propagation is an even function of y, whereas the transverse
particle velocity vy is an odd function of y.

The dispersion relation of the symmetric modes of the plate, which gives

the Lamb wavenumber kl‘-./nz + kzz as a function of frequency may be written

as
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nsz - kL2 ks ékLGs ¢
5 - cot up 2 + 3 cot ng 3 = 0. (A-2)
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Here the wavenumbers along y,up and g ,are functions of kL and w defined

by the relationships

2 2 2 _ 2
kL + np kp w 7 oM
’ (A-a)
k 2 + n 2. k 2 = wz £ J
L s s in

where A and ;, are the Lame constants, p is the mass density and  is the

radian frequency.

The modal fields obtained by summing the contributions from the P and

SV plane waves, which are reflected back and forth between the faces of the

plate, are

~ 1 fR ”—
-j - in n
J/_p'.p ks s p Y
k
8(y,z) = = ——'f-l—- K cos %y
’ NL e ] P
1 2 2 2
- == (k - 21 - 2k [}
K 2 ( s P z )cos Kp y
L ° | (a-4)
r‘j L EL sinx_y
75 % o1 s
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n_ cos -i 1 kz -3 kzz
+ =k Cos u_y e
n_ cos y & L
8 8 2
-2 "2 o
ksk cos ng ¥
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k
- 9 L
ns 2 k
]

The characteristic impedance Z of the modal transmission line is chosen to be

z, = + wp/n A-7)

where » = /kL? - kzz is the wavenumber in x direction.

The choice of sign before q in (A-5) and zZ, in (A-7) is made such that

y the normalizing conditions
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/2 *
\ grgady=-1 (A-8)
t/2
can be satisfied. With this normalizing condition, the power carried along x
per unit length along z, is equal to the power % Re VI* on the modal trans-
mission line for modes with real or imaginary x. We impose this condition to
facilitate conservation of power test of our results for mode coupling.

Approximate solution to the dispersion equation (A-2) can be obtained

for the case of a thin plate at low frequencies (nst << 1 and upt << 1) by

. t t 2 2
i _— —_ —— — i
approximating cot Kp 2 and cot n, 5 as npt and nst. This approximation leads

to a solution for the wavenumber kL of L(0) mode, which is the lowest symmetric
Lamb mode, and the only symmetric Lamb mode that propagates down to zero frequency.

It is found that

K, = [Loy (A-9)

where v is Poisson’'s ratio.
With (A-9) and the approximations cos 6 =~ 1 and sin 6 ~ 6 for § << 1,

the mode functions in (A-4) and (A-5) can be approximated by

- -
_L KK
. 1 2kL2 -3k 2
8(y,2) = - , |e (A-10)
Loy . k,
1-v " 2
L
o |
- _
k
z 2
. s o] NP
q(y,z) = N e (A-11)
t 1
| v |
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with the characteristic impedance chosen as

=% -
Zp = (A-12)

The normalization constant NL obtained via (A-8) is given by

-/
N =i (A-13)

2. Antisymmetric Modes: F(0) and F(1)

In the antisymmetric modes Ve is an odd function of y whereas vy is an
even function, with the result that the plate bends or flexes during its

motion. These modes are therefore referred to as flexural modes. The dis-

persion relation giving the wavenumber kF =‘/a2 + kz2 of flexural modes as a

function of frequency is

2 2,2
" B kF ] t ]

e — tan »n_ > + tan w_ = =G (A-14)

2 N p2 2 S

ks P ks

(A-15)

The modal fields are obtained again by summing the fields contributed

from P and SV plane waves that are multiply reflected between faces of the plate.

The mode vectors are given by

-121-




—_— 1 —T
—— cos “_ Y
Jhp P
1 § = ‘2 in n_y
= = ==
E(Yaz) =N /up Kp
I P
kS”p (ks 2u 2k sinn_ y
(A-16)
L . -
~ 1 °F
D K cos KS y —]
s
t .
n cos u_ = , # k -jk z
2 j s 2z . z
+ s k—'k—s:l.nn y e
n cos u = |YWP Ts °F
s 2
2
-] =— sin u_y
K 2 kF s
s
and
B 7] s F ]
-2 /up cos n_y k_( —5|cos n, ¥
P t k .
+1 k n_ cos x5 w Sk 'szz
a(y,z) = = 52/pp = siny_y | + £ z/ﬁ—i—zsmny e
P n_cos u_ o k k
P s 2
" . 1
s . .S
- jJ—sin »_ vy i sin n_ y
np P F
| | - @a-17) 3
where ng and np are given in (A-6) with kL replaced by kF.
The characteristic impedance of the modal transmission line is chosen as

zp = + 48 (a-18)
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where » = kF2 - kz2 is the wavenumber along x. The signs of q and ZF are
chosen such that (A-8) is satisfied.

There are two significant flexural modes that should be taken for the
wave propagation in the thin plate at low frequencies. One of these, the
lowest flexural mode, F(0), has a real wavenumber even for frequency approach-
ing zero, while the other, the first higher flexural mode, F(1l), has an
imaginary wavenumber. The F(l) mode cannot be neglected even though it has
an imaginary wavenumber since the imaginary wavenumber vanishes as the fre-
quency goes to zero, and since its transverse dependence is similar to that
of the F(0) mode. As a result, the presence of F(l) strongly influences the
amplitude of the F(0) mode, and other modes, excited at a junction. In addi-
tion the F(l) couples neighboring junctions at low frequencies.

The wavenumbers of the lowest flexural mode, k_., and the first higher

1308
flexural mode, kFl,can be obtained from the dispersion equation (A-14) by
wt . t ®n t
approximating tan Kp % and tan — - as —g— and —%— for the case of a thin plate

at low frequencies. The modal wavenumbers are found to be
s [
kFO = : 6(1-v)

o (a-19)
kFl = - ( ;?(6(1-v)

The mode functions given in (A-16) and (A-17) may be approximated by
substituting sin BaH and cos § = 1 - 9{, which is appropriate for the case

of a thin plate. The thin plate approximations for the F(0) mode gives
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1 1 7]
Jwp 1-2r

g(y,z) = 1 _J_kz_y 1 e-jkzz
— ’ NO /p,p 1'2!‘

- 2
2K
J'ksy[1 + = ( . -11

(A-20)

wi-v 1-2r

ok Aaen? - yh
/i Z(1-v)

1 1 -jkzz
(y,2) =5 |- 32 /wp kY 757 e (a-21)

-

Here
r =/6(1-v) k t (A-22)

and the characteristic impedance is given by

7z =22 (A-23)
0 "

The normalization constant No can be obtained via {(A-8) as

k2 t3
s

= - 1-v )
0" [asET [ maae (a-24)

The thin plate approximations for the F(l) mode gives

po— 1 —
/EB 1+2r
k. y -jk =z
- 1 j z 1 z
802 = § | 7o T e (a-25)
2k 2
1 1 z
jksy T~ ¥ Ter K 7 -1
s
. -
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ksz((t/z)z-yz)
/;5 2(1~v)

1 kzy -jkzz
q(y,2) = - | - 32 /o 157 e (A-26)

1

jk y
- s’ 142r ]

where r is given in (A-22). For the F(l) mode

= - @E‘ -
z, 2 (A-27)
and .
k2
N = N R i (A-28)
1 &142r) (1-v) 2 (1+2r) |

The - sign in the characteristic impedance Zy and the mode functions q has

been chosen in order to satisfy normalizing condition (A-8).

B. SH Modes of an Infinite Plate

The SH modes are orthogonally polarized with respect to the Lamb modes
in that the particle displacement of an SH mode is parallel to the plate
faces but perpendicular to the propagation direction. The lowest mode,
SH(0), is of even symmetry and the only SH mode that propagates down to zero

frequency. The dispersion relation for symmetric SH modes, which yield SH

wavenumbers, k 2 4-k22 as a function of frequency, is given by the

SH

gsimple expression

2 2
kSH /ks - (2un/t) n=0,1, 2, ... (A-29)
Here, ks = /& is the shear wavenumber.

The normalized mode functions of even symmetry are given by
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0
-jk_z
1 1 2oy z
,2) = — | =—— | cos e (A-30)
‘&(y ) Ne \/EB t
kz
2
s
B 2kz m 2amy |
S 5— sin ty
k " t
s
kzz'K2 2nrry -k 2
_ 1 Jpp cos e (A-31)
S(y,z) = N k 2 t
e s
- k_z cos 20my
kb t

where

n, 2
= - (—S £ -
Ne j[l ( t ] 2 €n (a-32)

with A = 2rr/kg and

_ 2 n=20
The characteristic impedance is chosen to be

7 = Ef (A-34)
] w

The dispersion relation and the mode functions for the lowest SH mode,
SH(0), can be obtained by simply setting n = 0 in (A-29) through (A-33).
One obtains

k.. =k (A-35)
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o |
} 1] 1 - ik, 2
g(y,2) &l 7o e (A-36)
2k
=z
4 k
L S
-
_ o 2
| 1 kzz-nz -jkzz
q(y,2) =7 | /W e (&-37)
'3 K 2
k S
-
K
L S

The modal quantities used in the text, and listed in equations (7)-(17)

are obtained by setting kz = 0 in corresponding expression listed in rhis

Appendix.
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